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Chapter 1

Introduction

1.1 Introduction

Machine learning and other predictive statistical methods play an increasingly

major role in applied economics. The continuous increase in the data available

calls for novel methods to explore the patterns that interest economic scientists.

One field where predictive analytics triumphs is financial forecasting. It is hard

to find an other field where motivation can be so purely translated into currency

units. In financial prediction an algorithm slightly better in almost any sense

could instantly make anyone rich. This observation results in a fascinating field

of research where cutting edge algorithms are constantly researched and used

extensively, however these results are mostly kept as secrets. In this thesis I

will write about machine learning techniques effectively used in predictive stock

market analysis, although we will see that the word ”effective” has a different

meaning when it comes to forecasting future prices.

The main goal of this thesis is to give a general overview of the viability of techni-

cal analysis in stock market forecasting combined with state-of-the-art machine

learning techniques. I do not aim to propose a trading strategy that can beat

the market and make anyone rich (if I could I would not be writing this right

now), but to find supporting empirical evidence to the claims, technical analysis

makes.

In this first introductory chapter, I will give a short description of the stock

market and the basic problem of prediction along with efficient market hypothesis

often cited as a critique for these methods. In the second chapter I will lay down

the foundations of the machine learning algorithms I used for prediction and I

1



Chapter 1. Introduction 2

will also describe the computational algorithms behind them. In the third and

fourth section I will perform my empirical analysis on the NASDAQ stock index

and compare the results of the different methods presented in chapter two. In the

final chapter I will propose some areas of future research, and give my concluding

remarks.

1.2 The stock market

The idea behind the stock market is very easy to grasp. By definition it is ”the

market in which shares of publicly held companies are issued and traded either

through exchanges or over-the-counter markets” [1]. It also stands as a symbol

of capitalism and the free-market economy where everyone (who is willing to pay

the price) can own a small percentage of the desired firm. There are basically

two types of stock exchanges, the auction and the dealer market. Now I will

describe the substantial difference between these types by introducing two of the

biggest stock exchanges in the world, the NYSE and the NASDAQ.

NYSE

The New York Stock Exchange, based in New York City is the world’s largest

stock exchange where brokers can trade approximately 8000 listed issues. It was

established in 1792 and plays a major role in world economics ever since. ”It

represents one-third of the world’s equities trading volume” [2]. The NYSE is

an auction market, where competing buyers and sellers enter their bid and sell

prices at the same time and a specialist matches the the highest bid with the

lowest sell and executes the transaction setting the transaction price as the new

market price. In this case the buyer and seller trade directly with each other

made possible through the market specialist. Orders are placed either personally

(floor trading) or electronically [3][4].

NASDAQ

The NASDAQ (National Association of Securities Dealers Automated Quota-

tions) stock exchange is the second largest stock exchange after the NYSE. It

was founded in 1971, as the world’s first fully electronic stock market with no

floor trading possible. In contrast with the NYSE auction based trading system,

the NASDAQ stock exchange uses a dealer market system. The mean difference

between the dealer and the auction market is that in a dealer market, the buyer

and the seller don’t directly interact with each other, but only with a dealer

(market maker). Market makers are large investment companies. In this case
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market makers maintain inventories of the stocks they are selling and have to

post a two sided quote -bid/ask- on which they accept transactions. The num-

ber of market makers and the constraint on the size of the bid-ask spread force

market competition and thus leads to effective trading [3][4].

1.2.1 Technical analysis and data mining

Let us begin with the definition of technical analysis: ”Technical analysis is

the study of market action, for the purpose of forecasting future price trends.”

Market action basically means, ”what happened on the market”, which can be

translated into the change in prices and volumes over time. Before explaining

the rationale behind it let me draw parallels between technical analysis and data

mining. Predictive data mining is the ”the process of discovering interesting and

useful patterns and relationships in large volumes of data” [5]. We could easily

say that technical analysis is exactly data mining on stock market data with the

intention of providing accurate predictions for future price movements. Technical

analysis uses a large collection of statistics computed from historical market data

to give useful heuristics for prediction. While many say that technical analysis

is a form of art instead of an exact scientific method, most of the techniques

used can be formalized, into simple decision rules very much like in classification

problems.

Although it is easy to see the similarities in methodology, we still need to jus-

tify why technical analysis should be possible in the stock market at all. Most

methods in technical analysis are rooted in the several articles Charles Dow pub-

lished in the Wall Street Journal [6] His company with Edward Jones was the

first to publish the first stock index in 1889, which was the average closing price

of eleven stocks. Dow’s ideas about market speculation are what we now call

as Dow’s Theory, and it consist of six basic tenets that constitute the rationale

behind technical stock market analysis.

Basic tenets [6]

1. The averages discount everything.

The idea is that all information that is needed about the market is already

present in the stock prices. No additional information, like exchange rates

or commodity prices is useful, it is already in the price.

2. The market has three trends.

The three types are; primary, secondary and minor. The primary trend
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is the main direction of movement which could last from less than a year

to several years. The secondary trend, or intermediate reaction may last

from several days to a couple of months, and is responsible for 30-60% of

price movements. The minor trends or swings generally last from hours to

days.

3. Major trends have three phases

The three phases are; accumulation, public participation and distribution.

The accumulation phase is when the most rational and informed investors

trade, who are the fastest to react any insider or global information. The

public participation phase is when rapid volume and price change occurs.

This is when trend followers start to ”buy-in” motivated by the improving

business conditions. The last, distribution phase, is when the better eco-

nomic conditions become publicly apparent and public speculative trading

increases.

4. The averages must confirm each other.

Although Dow referred to two well defined averages, the concept behind

the idea is that signals should be able to confirm each other. One signal

may not be signal at all.

5. Volume must confirm trend.

Dow considers volume as an important secondary trend which should move

together with the primary trend. Simply put, in an uptrend where price

constantly increases, volume would increase too. On the contrary in a

downtrend, when price falls, there will be a fall in volume also.

6. A trend is assumed to be in effect until it gives definite signals

that it has reversed.

This is self-explanatory it simply implies that, whenever a change in trend

occurs there will be definite signs to support it.

We can see the basic ideas of technical analysis relate to asymmetric market

information and the exploitation of human feelings, such as greed or fear. While

these information-theoretical or psychological concepts are not articulated ex-

plicitly, it is hard to imagine that technical analysis could work without them.

1.2.2 Criticism of technical analysis and the EMH

Technical analysis is a highly debated topic among economists, while many use

it and agree with its methodology based on behavioral psychology, there is a
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great share of them who simply think it is useless and is against basic economic

principles. In fact there is a Nobel-prize winning economic theory called the

Efficient Market Hypothesis by Eugene Fama which contradicts all the basic

assumptions of technical analysis. There are several forms of the EMH in which

I will not go into detail. The EMH says that market prices fully and instantly

reflect all the available information, basically saying that future prices cannot be

predicted from past market information.

The concept of EMH can be summarized in a good joke I found very fitting [7]

”An economist is strolling down the street with a companion. They come upon

a $100 bill lying on the ground, and as the companion reaches down to pick it

up, the economist says, ‘Don’t bother – if it were a genuine $100 bill, someone

would have already picked it up.”

The efficient market hypothesis is one of the most controversial theories in eco-

nomic sciences, even after decades of research economists are yet to reach a

consensus whether financial markets are truly efficient or not. While the EMH

has theoretical implications for the usage of technical analysis it is not my goal

in this thesis to prove or disprove these, but I think it is very important to have

an overview of the market-theoretical criticism.



Chapter 2

Introduction to Machine

Learning

In this chapter after laying out the foundations of supervised learning and binary

classification, I will introduce some of the most popular off-the-shelf classification

algorithms. The algorithms presented in this section will give the base of my

empirical analysis. I will discuss three types of algorithms, first I will explain

the k-Nearest Neighbors method which uses a very simple basic idea but also

gives a good foundation for more sophisticated methods. The next algorithm

I will present is simple and regularized Logistic Regression, which is a highly

popular classification method in statistical analysis. After logistic regression I

will introduce the Support Vector Machines and the Random Forest classifiers

which can be considered state-of-the-art methods in machine learning.

2.1 Supervised learning

Definition 2.1.1. Supervised learning is the task of learning a target function

T : X → Y that maps an example set X to the set of possible labels Y [8]. On

the condition that T gives a ”good” approximation for the labels on the training

set:

T (x(i)) ≈ y(i), i = 1 . . . ,m. (2.1)

The target function T is also called the classification model if Y is discrete valued

and regression model if Y is continuous.

6
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Definition 2.1.2. Binary classification is a classification problem in which the

set of class labels Y contains only two elements. Without loss of generalization

from now on we will assume that Y = {0, 1}.

Now I will define the decision boundary, associated with a decision function T .

Definition 2.1.3. Decision boundary is an N-dimensional hyper-surface which

partitions the points in the underlying vector space in two sets, one for each

class.

A decision boundary is associated with the classifier C if all points in one partition

are classified as 0 and all points in the other as 1.

Definition 2.1.4. Linear classification model is a decision function T (x) for

which the decision boundary is a hyper-plane in the N dimensional Euclidean

space.

Later in this chapter we will see that there are basically two types of classifica-

tion models. The first category assumes the dataset to be generated by some

probability distribution. In this case the conditional probability distribution of

Y on condition of X is modelled (also called discriminant function methods) I

will go into further details when discussing logistic regression. The other cat-

egory is when the decision boundary is explicitly modeled (optimal separating

hyperplane methods). The appropriate model choice depends heavily on the

assumptions we can make about the dataset [9].

2.2 k-Nearest Neighbors

One of the simplest yet useful classification algorithm is the k-Nearest neighbors

algorithm which can work exceptionally well with dense input space. The idea

behind the algorithm is if a an input vector is ”close” or ”similar” to an other

input vector, it is likely that they will have the same class labels.

k-NN classifier

T (x) = arg max
v

∑
(xi,yi)∈Dz

I(v = yi), (2.2)

where Dz is the set (xi, yi) pairs for which xi is the closest k vectors to x by

some distance or similarity measure. The classifier in this case simply takes a
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majority vote among the k nearest points to decide the predicted class label.

A cheap extension of this model to weight the ”votes” of the points by their

distance (wi), assigning larger weight to closer points [8].

Distance weighted k-NN

T (x) = arg max
v

∑
(xi,yi)∈Dz

wi × I(v = yi). (2.3)

k-NN often serves as a good benchmark in almost any classification problem, for

its easy implementation and straightforward interpretation.

2.3 Logistic Regression

Logistic regression is a simple and widely used linear classification model. It is a

member of a family of linear regression models called Generalized Linear Models

(GLM). In this section I will describe the assumptions and the derivation of the

method, and also different regularization methods used to increase forecasting

accuracy [10].

By assuming that the samples (x(i), y(i)) are generated by some probability dis-

tribution X and Y , finding the target function can be viewed as finding the

y ∈ Y for which the conditional probability given x is the highest:

T (x) = arg max
y∈Y

P (Y = y|X = x). (2.4)

A popular way of constructing classification models is to model the conditional

probability distribution P (Y |X = x) as a function of x characterized by some

parameter θ. Given a function form, learning the model is the process of finding

the optimal θ parameter. There are two main approaches in finding θ, one is

the maximum likelihood estimation which corresponds to the frequentist ideas,

and the other is the maxmimum aposteriori estimation which corresponds to the

Bayesian approach:

L(θ) =
m∏
i=1

P (Y = y(i)|X = x(i); θ) (2.5)

θML = arg max
θ

L(θ) = arg max
θ

logL(θ) (2.6)

= arg max
θ

m∑
i=1

logP (Y = y(i)|X = x(i); θ). (2.7)
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The function L(θ) is called the likelihood function, and l(θ) = logL(θ) is the

log-likelihood function.

This maximum likelihood estimate will be used to find parameters for simple

logistic regression. The Bayesian view where θ is regarded as a random variable

too, gives us a different estimation. Now we can pick θ based on maximizing the

conditional probability of the parameter given the training set:

θ̂MAP = arg max
θ

m∏
i=1

L(θ)p(θ) = arg max
θ

[l(θ) + log p(θ)]. (2.8)

with p(θ) being some prior distribution on the parameters. We will see that this

technique will be used later as an effective method of model regularization for

logistic regression.

2.3.1 Simple Logistic regression

With simple logistic regression the label variable Y is assumed to have Bernoulli

conditional distribution given x feature vector, parametrized by a function de-

pendent on some linear combination of the input features.

P (y = 1|x; θ) = hθ(x)

P (y = 0|x; θ) = 1− hθ(x). (2.9)

Or more compactly:

P (y|x; θ) = (hθ(x))y(1− hθ(x))1−y. (2.10)

The function hθ(x) is called the link function. In this case let us define hθ(x) as:

hθ(x) = g(θTx) =
1

1 + e−θT x

g(z) =
1

1 + e−z
. (2.11)

Assuming an independently generated sample we can write the log likelihood as

a function of the parameter θ:
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logL(θ) = l(θ) = log p(y|X; θ) (2.12)

= log
m∏
i=1

p(y(i)|x(i); θ)

= log
m∏
i=1

(hθ(x
(i)))y

(i)
(1− hθ(x(i)))1−y

(i)

l(θ) =
m∑
i=1

y(i) log hθ(x
(i)) + (1− y(i)) log (1− hθ(x(i))). (2.13)

This yields the following optimization problem:

arg max
θ

l(θ). (2.14)

Theorem 1. Convexity

The optimization problem defined in 2.14 can be solved by convex optimization.

Proof.

l(θ) =

m∑
i=1

y(i) log hθ(x
(i)) + (1− y(i)) log (1− hθ(x(i))).

After substituting in for hθ we get:

l(θ) =
m∑
i=1

y(i)(θTx(i))− (1− y(i)) log (1 + exp θTx(i)) (2.15)

=
∑

i,y(i)=1

(θTx(i))−
∑

i,y(i)=0

log (1 + exp θTx(i)). (2.16)

To show that l(θ) is a concave function we only need to show that Hessian-matrix

is negative semi definite. First let’s compute the second partial derivatives:

∂

∂j∂k
l(θ) = −

∑
i,y(i)=0

x
(i)
j x

(i)
k

eθ
T x(i)

(1 + eθT x
(i)

)2
. (2.17)



Chapter 2. Introduction to machine learning 11

aTHa = −
n∑
j=1

n∑
k=1

ajak

 ∑
i,y(i)=0

x
(i)
j x

(i)
k

eθ
T x(i)

(1 + eθT x
(i)

)2


aTHa = −

∑
i,y(i)=0

eθ
T x(i)

(1 + eθT x
(i)

)2

n∑
j=1

n∑
k=1

ajakx
(i)
j x

(i)
k

aTHa = −
∑

i,y(i)=0

eθ
T x(i)

(1 + eθT x
(i)

)2

 n∑
j=1

ajx
(i)
j

2

< 0. (2.18)

⇒ aTHa < 0 for ∀a ∈ Rn ⇒ l(θ) is concave therefore 2.14 can be solved by

convex optimization.

2.3.2 L1 and L2 regularized Logistic regression

The main purpose of regularization in machine learning is to increase the pre-

dictive performance of the model (generalization) by imposing constraints on

the model parameters. It seems intuitive to prefer models to assume that most

components of θ(the coefficients for different variables in the linear combination)

should be close or equal to zero, especially in high dimensional settings. Also a

model with more small coefficients is preferred to one with only a few big coeffi-

cients (please note that the words small and big only have meaning in the actual

context).

This can be achieved by creating a cost function C(θ) in the form of

CL2(θ) = −l(θ) +
1

2
λ‖θ‖22. (2.19)

There are alternative formulations of this type of regularization that are widely

used1. My empirical results will correspond to this type of formulation of the

regularization problem. Penalizing L2 norm (Euclidean length) of θ or similarly

the L1 norm by:

CL1(θ) = −l(θ) + λ
n∑
i=1

|θi|. (2.20)

1Scikit-learn uses: CL2(θ) = −λl(θ) + ‖θ‖22
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This type of formulation of the cost function can be reached by a Bayesian

approach to the classification problem and introducing an a priori distribution

of θ and computing the MAP estimate [11].

Minimizing CL2 is equivalent to the MAP estimation of Y with θ having a normal

a priori distribution of:

θ ∼ N(0, λ−1I).

Proof.

p(θ) =
1√

(2π)n|λ−1I|
exp

(
−1

2
θTλI−1θ

)
(2.21)

p(θ) =
1√

(2πλ−1)n
exp

(
−1

2
λ‖θ‖2

)
θ̂MAP = arg max

θ
[l(θ) + log p(θ)]

= arg max
θ

[l(θ) + log
1√

(2πλ−1)n
− 1

2
λ‖θ‖22]

= arg max
θ

[l(θ)− 1

2
λ‖θ‖22]. (2.22)

Similarly in case of CL1θ is assumed to have a Laplacian prior2 [11].

2.4 Support Vector Machines

Support Vector Machines can be safely considered to be one of the state-of-the-

art off the shelf machine learning algorithms today. Its popularity and effec-

tiveness lies in the wide range of data structure it can model. Although it does

not provide automatic and universal remedy to our predctive problems, if used

correctly it can outperform most of the other methods currently available. As

we will see, the algorithm that constructs SVMs is very elegant and can deal

with non-linearity by using kernels. In this section I will introduce the basic idea

behind SVMs and also show how it can be extended to non-linear data structure.

2.4.1 Linear SVM

In this section I will derive the quadratic optimization problem that characterizes

Linear Support Vector Machines [12].

2p(θ) ∝ exp(−λ‖θ‖1)
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Figure 2.1: Geometry of SVMs

Let w and b denote the parameters of the separating hyperplane (L).

The signed distance of any point x to L is given by:

1

‖w‖
(wTx+ b). (2.23)

To maximize the margin between the two classes consider the following opti-

mization problem:

max
w,b,‖w‖=1

M (2.24)

y(i)(wTx(i) + b) ≥M, i = 1, ...m.

The conditions ensure that all the points are at leastM distance from the decision

boundary, but the condition of ‖w‖ is non-linear. Fortunately we can get rid of

this by replacing the conditions with:

1

‖w‖
y(i)(wTx(i) + b) ≥M. (2.25)

Since w is arbitrarily scalable, we can set it to ‖w‖ = 1
M which simplifies (by sub-

stitution and turning the maximization problem into minimizing the reciprocal)

the above problem to the equivalent form of:

min
w,b

1

2
‖w‖2 (2.26)

y(i)(wTx(i) + b) ≥ 1, i = 1, ...m .
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To solve this problem we need to introduce Lagrange duality [13].

2.4.2 Lagrange duality

min
w
f(w)

gi(w) ≤ 0, i = 1, ..., k

hi(w) = 0, i = 1, ..., l. (2.27)

To solve this optimization problem let us define the generalized Lagrangian as:

L(w,α, β) := f(w) +

k∑
i=1

αigi(w) +

l∑
i=1

βihi(w). (2.28)

The primal problem is defined as:

p∗ = min
w

max
α,β;αi≥0

L(w,α, β) (2.29)

= min
w
θP (w). (2.30)

The dual problem is defined as:

d∗ = max
α,β;αi≥0

min
w
L(w,α, β) (2.31)

= max
α,β;αi≥0

θD(α, β). (2.32)

Theorem 2. Weak duality

For any primal/dual optimization problem, the following inequality holds: d∗ ≤
p∗.

Proof. Lets ŵ, α̂, and β̂ be the solutions for 2.32. Then:

L(w, α̂, β̂) ≥ L(ŵ, α̂, β̂) ∀w (2.33)

max
α,β

L(w,α, β) ≥ L(w, α̂, β̂) ∀w (2.34)

p∗ = min
w

max
α,β

L(w,α, β) ≥ L(w, α̂, β̂) ≥ L(ŵ, α̂, β̂) = d∗. (2.35)



Chapter 2. Introduction to machine learning 15

Theorem 3. Slater’s conditions(Strong duality)

Consider a convex optimization problem of the form 2.27, whose corresponding

primal and dual problems are given by 2.30 and 2.32. If there exists a primal

feasible solution w for which each inequality constraint is strictly satisfied(i.e.,

gi(x) < 0), then d∗ = p∗

Theorem 4. Karush–Kuhn–Tucker

If w∗ is primal feasible and (α∗, β∗) are dual feasible and if

∇wL(w∗, α∗, β∗) = 0, (2.36)

α∗i gi(w
∗) = 0, i = 1, . . . ,m, (2.37)

then w∗ is primal optimal, (α∗, β∗) are dual optimal, and strong duality holds.

The condition 2.36 is the standard gradient stationarity condition of uncon-

strained optimization and the set of equalities in 2.37 are called KKT comple-

mentarity conditions which imply that,

α∗i > 0 ⇒ gi(w
∗) = 0 (2.38)

gi(w
∗) < 0 ⇒ α∗i = 0. (2.39)

2.4.3 Solving the optimal margin problem for the separable case

To solve 2.26 using Lagrange duality we need to rewrite the inequality constraints

as:

gi(w, b) = −y(i)(wTx(i) + b) + 1 ≥ 0 (2.40)

Now our problem is in the form of 2.27(note that there are no equality constraints

and thus β) so the Lagrangian is:

L(w, b, α) =
1

2
‖w‖2 −

m∑
i=1

αi[y
(i)(wTx(i) + b)− 1] (2.41)
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To solve the dual problem we first minimize L with respect to w and b by taking

the derivatives. This yields the following equations:

∇L(w, b, α) = w −
m∑
i=1

αiy
(i)x(i) = 0

w =
m∑
i=1

αiy
(i)x(i) (2.42)

∂

∂b
L(w, b, α) =

m∑
i=1

αiy
(i) = 0 (2.43)

Substituting back to 2.41 we get:

L(w, b, α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

y(i)y(j)αiαj(x
(i))Tx(j)

=
m∑
i=1

αi −
1

2

m∑
i,j=1

y(i)y(j)αiαj〈x(i)x(j)〉 (2.44)

To solve our initial problem we now need to macimize 2.44 with respect to α:

max
α

W (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

y(i)y(j)αiαj〈x(i)x(j)〉,

αi ≥ 0 i = 1, ...,m
m∑
i=1

αiy
(i) = 0 i = 1, ...,m

2.4.4 The non-separable case

It is not always possible to find a separating margin, in this case, we would like

to minimize the error. A sensible way of doing this is to let some point have a

margin 1 − ξi and we will penalize these points with Cξi where C controls the

trade-off between the margin size and the error. In this case the optimization

problem changes to the following:

min
w,b

1

2
‖w‖2 + C

m∑
i=1

ξi (2.45)

y(i)(wTx(i) + b) ≥ 1− ξi

0 ≤ ξi, i = 1 . . . ,m.
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2.4.5 Solving the non-separable case

To solve 2.45 using Lagrange duality we need to rewrite the inequality constraints

as:

−y(i)(wTx(i) + b) + 1 + ξi ≤ 0

−ξi ≤ 0. (2.46)

Now our problem is in the form of 2.27(note that there are no equality constraints

and thus β) so the Lagrangian is:

L(w, b, ξ, α, r) =
1

2
‖w‖2 −

m∑
i=1

αi[y
(i)(wTx(i) + b)− 1 + ξi]− (2.47)

−
m∑
i=1

riξi + C

m∑
i=1

ξi

ξi, ri ≥ 0. (2.48)

To solve the dual problem we first minimize L with respect to w,b and ξi by

taking the derivatives. This yields the following equations (KKT stationarity-

conditions):

∂L

∂b
= 0 ⇒

m∑
i=1

αiy
(i) = 0 (2.49)

∂L

∂ξi
= 0 ⇒ C − αi − ri = 0

⇒ 0 ≤ αi ≤ C (2.50)

∂L

∂w
= 0 ⇒ w −

m∑
i=1

αiy
(i)x(i) = 0

⇒ w =

m∑
i=1

αiy
(i)x(i). (2.51)

Substituting back to 2.47 we get the following optimization problem:

max
α

W (α) =

m∑
i=1

αi −
1

2

m∑
i,j=1

y(i)y(j)αiαj〈x(i)x(j)〉,

0 ≤ αi ≤ C i = 1 . . . ,m
m∑
i=1

αiy
(i) = 0 i = 1 . . . ,m.
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The KKT dual-complementarity conditions are as follows:

riξi = 0 (2.52)

αi[y
(i)(wTx(i) + b)− 1 + ξi] = 0, i = 0, . . . ,m. (2.53)

Using C−αi−ri = 0 and our initial constraints (2.46), we can reformulate these

conditions to:

αi = 0 ⇒ y(i)(wTx(i) + b) ≥ 1

αi = C ⇒ y(i)(wTx(i) + b) ≤ 1

0 < αi < C ⇒ y(i)(wTx(i) + b) = 1. (2.54)

We will use these conditions to verify if our algorithm found a maximum.

After solving for αi we need to substitute back in 2.51 and 2.45 in order to get

w and b. After doing so we can use the following equation to form predictions:

y = sign(wT + b) = sign((
m∑
i=1

αiy
(i)x(i))Tx+ b)

= sign(
m∑
i=1

αiy
(i)〈x(i), x〉+ b). (2.55)

Please note that using αis we can express our prediction in only dot products

which we will see will be extremely useful later.

2.4.6 Kernels

What we have learnt so far is enough to create SVMs that classify linearly sep-

arable (ar almost separable) data in the input feature space. It usually happens

that our data is linearly non-separable in the original feature space but it be-

comes separable once we map the input vectors in some higher dimensional space.

The only problem is that sometimes we want to compute such high dimensional

feature mappings that it becomes computationally unaffordable to do so. What

is fortunate about the optimization problem described above is that it does not
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depend on the actual input vectors x(i) only on scalar products of two of these

vectors. The main idea behind kernels is to provide an efficient way of comput-

ing scalar products between mapped vectors without explicitly calculating the

transformed vector.

Let us denote some feature mapping as φ then corresponding kernel is:

K(x, z) = 〈φ(x), φ(z)〉. (2.56)

In many cases computing K(x, z) is very easy, a popular example of this wold

be the polynomial kernel:

K(x, z) = (xT z + c)d. (2.57)

Which corresponds to the feature space of all monomials of x1, x2 . . . up to order

d (
(
n+d
d

)
dimensional). Despite the high dimensions, to calculate the scalar

product using the polynomial kernel takes only O(n) time.

We can see that kernels can be a very useful addition to our toolbox, but how

do we now if a kernel function corresponds to a valid feature mapping? To

investigate this relation we first need to define the Gramm-matrix for a specific

kernel.

Definition 2.4.1. Gramm-matrix

Given a set of records S : {x(1), . . . , x(m)}, (m <∞) and a kernel K, the Gramm-

matrix is GS ∈ Rm×m for which (GS)ij = K(xi, xj).

Theorem 5. Mercer’s theroem

Let K : Rn × Rn 7→ R be given. K is valid if and only if for ∀{x(1), . . . , x(m)}
training set, the corresponding Gramm-matrix is symmetric positive semi-definite.

Proof. [14] If K is a valid kernel then there exists some φ(.) for which 2.56 holds.

Let V be the matrix whose columns are [φ(x1), . . . , φ(xm)], then

(GS)ij = V TV. (2.58)

From this it follows that Gij must be positive semi-definite, since for all z ∈ Rm,

(zTV T )(V z) ≥ 0

Assuming that S is finite, since GS is symmetric PSD there exists a real non-

singular lower-triangular matrix L for which



Chapter 2. Introduction to machine learning 20

(GS)ij = LLT . (2.59)

For φ(xi) = li where li is the ith row of L which gives a valid feature mapping

for x.

We could already see that the polynomial kernel can greatly help us with com-

puting high dimensional feature mappings in linear time. Now I will introduce

the Radial Basis Function (Gaussian) kernel also known as RBF-kernel, which

in contrast to the poly kernel, corresponds to an infinite dimensional feature

mapping and is widely popular for it superior performance.

KRBF (x, z) = exp(−γ‖x− z‖2). (2.60)

Intuitively, the gamma parameter defines how far the influence of a single training

example reaches, with low values meaning ‘far’ and high values meaning ‘close’

[15].

So now going back to 2.52 and 2.55, we can see why it is so useful that model

training and prediction are both expressed in dot products between training

vectors. Using this fact we can use any Kernel that satisfies the necessary con-

ditions to find maximal margin separating hyper-planes in any dimensions using

the same optimization problem.

2.4.7 The SMO algorithm

In this section I will show a popular algorithm to solve the SVM dual optimization

problem of 2.52

max
α

W (α) =

m∑
i=1

αi −
1

2

m∑
i,j=1

y(i)y(j)αiαjK(x(i)x(j))

0 ≤ αi ≤ C i = 1...,m (2.61)
m∑
i=1

αiy
(i) = 0 i = 1, . . . ,m. (2.62)

The SMO algorithm is conceptually very similar to other QP solver algorithms

in the that it divides the problem into smaller QP subproblems. In the case of
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SMO, it divides it into the smallest possible QP problems with only two variables

[16].

The main idea behind the algorithm is that in every iteration it maximizes W

with respect to two Lagrange mulitpliers. We need to change at least two αis

in order to obey the linear equality constraint. What we will see is that this

maximization can be done analytically so we do not need expensive inner loops,

making the algorithm scale easily. After every iteration the two jointly optimized

Lagrange multipliers are updated until the KKT conditions(2.54) are satisfied

with some ε error.

Figure 2.2: Illustrating the constraints for two αs

Figure 2.2 illustrates the effect of the constraint on the possible values of αis. The

0 ≤ αi ≤ C constraint makes sure they lie in the square and the
∑m

i=1 αiy
(i) = 0

linear equality constraint puts them on the line. So in every iteration the algo-

rithm finds the optimum of the objective function on the specific line segment,

which can be done analytically as follows:

Let us say that that we have a solution that satisfies 2.61-2.62. Then for some ζ

constant the following equation holds:

α1y
(1) + α2y

(2) = ζ (2.63)

α1 + α2y
(2)y(1) = ζy(1)

α1 = y(1)(ζ − α2y
(2)). (2.64)
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Holding the other α-s constant an substituting 2.64 instead of α1 int W we get

a quadratic optimization problem in the form of:

max W ′(α2) = aα2
2 + bα2 + c3 (2.65)

L ≤ α2 ≤ H. (2.66)

where a < 0.

Since W ′ is a parabola it has only one maximum point which can be calculated

analytically by taking the derivative. α2opt = −b
2a . Since this solution does not

take the constrain into account we need to modify it accordingly:

α2new =


H if α2opt ≥ H

α2opt if H > α2opt > L

L if L ≥ α2opt

. (2.67)

2.5 Random Forests

Recently there is a great interest in ensemble learning methods, which combine

the results of different models into one classification result. This idea makes very

much sense if we can ensure that the different models are somehow independent

from each other. A popular technique is called bagging, when different models

are built on bootstrap samples of the training set and then a majority vote

is taken at the end. The main concept of Random Forests, as introduced by

Leo Breiman in 1996, is that we add another layer of randomization on top of

bagging decision trees, during the tree construction itself. But before diving into

the Random Forest algorithm let us first introduce the basics of decision trees.

2.5.1 Decision Trees

Decision trees classify new instances by running them down a tree from the

root to some leaf node which in the end contains the predicted class label. At

each non-leaf node a simple rule is applied to the instance to decide which child

node to select next. This decision rule is based on the value of one of the input

attributes. Each child node represents a subset of the values of the decision

attribute at the given node. If a leaf is reached the instance is classified as the



Chapter 2. Introduction to machine learning 23

class label corresponding to that leaf-node. The purpose of different decision tree

building algorithms is to find the appropriate splitting attributes and splitting

values at every node which maximizes the predictive ability of the model. Now let

us examine the ID3 algorithm which is a popularly used tree building technique.

The main concepts of the algorithm [17]

• A non-leaf node in the tree represents a ”cutting” attribute and the edges

represent disjoint subsets of the attribute values for the node-attribute. A

leaf node corresponds to the predicted label when the input is described

by the path from the root to that leaf node.

• In order to reduce model complexity, each non-leaf attribute should corre-

spond to the input feature that contains the most information regarding

the class label given the path leading to that node.

• Entropy is used to determine the informativeness of a given attribute and

cutting-attributes are selected based on this measure.

In order to describe the algorithm we first need to define entropy and information

gain.

For a node with a class label probability distribution P = (p1, p2, . . . , pn), the

entropy H(P ) is defined as follows:

H(P ) = −
n∑
i=1

pi log2(pi) (2.68)

The class label distribution P can be estimated from the training data set, where

the estimate of pi equals the proportion of the training instances reaching the

node with label i. From now on let H(T ) denote the entropy of the members of

set T . For a split (T1, T2, . . . , Tn) we can write the information needed to classify

the instance as:

H(X,T ) =
n∑
i=1

|Ti|
|T |

H(Ti) (2.69)

which is basically the expected value of the entropies of the subsets generated

by the split.
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At each node we want to select the attribute A that adds the maximal amount

of new information about the class label, a concept which is called Information

Gain:

IG(A, T ) = H(T )−H(X,T ). (2.70)

The ID3 algorithm will use information gain at every node to select the best

splitting attribute for the training set.

The ID3 algorithm

1. If all records of T have the same label L, then return a single node with L

2. If all records have the same value for all the input attributes, then return

a single node with the most frequent label in T

3. Compute the information gain for each input attribute and let A denote

the attribute for which IG(A, T ) this is the biggest:

return a tree where the root is labeled with A and the algorithm is recur-

sively called for the child nodes represented by the subsets of T partitioned

by the values of A

While this specific algorithm uses Entropy to select attribute splits, there are

other possibilities, for example Gini-index.

2.5.2 The Random Forest algorithm

Now that we know how to construct decision trees, the Random Forest is very

simple yet incredibly effective.

The algorithm[18]

1. Take a bootstrap sample TB from the training set

2. Build a decision tree using TB where instead of using the best splitting

attribute, use the best splitting attribute of a random subset of the at-

tributes.

3. Repeat 1. and 2. to build many random trees

4. Classify a new instance by running it down on all the random trees then

take simple majority vote
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Most machine learning libraries give you the opportunity to fine-tune the way

each decision tree is built in the random forest. I will go into further detail when

describing the empirical results.
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The Dataset

3.1 Dataset

In this section I will describe my choice of stock index to model, and also the

sources I used to download daily stock market data.

3.1.1 The NASDAQ Composite Index

I chose to model the NASDAQ Composite Index, which is a stock market in-

dex representing the common stocks and securities listed in the NASDAQ stock

market.

Figure 3.1: NASDAQ Close Price

The NASDAQ Stock Market(National Association of Securities Dealers Auto-

mated Quotations) is an American stock exchange and is the second-largest stock

26
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exchange in the world by market capitalization. The NASDAQ Composite Index

has more than 3000 components representing the performance of technology and

growth companies.

Modelling a stock index instead of a single stock has many advantages. First

of all since it is a weighted average of the constituting papers, it is much less

volatile. Also the amount of stocks traded behind the index (volume) is larger

by orders of magnitude making it possible to detect the possible patterns. While

indices cannot be traded, there are many exchange traded funds on the market

which produce derivatives tracking closely the different market indices.

Figure 3.2: Daily % change histogram

3.1.2 Data sources

I used two sources to download daily data. For stock prices I used Quandl, which

is a free time-series data repository available on the internet. The Python api

provided by them makes it easy to automate the data downloading process.

The other data source I used to download time-series regarding the US economy

is the free api service provided by the St. Louis Federal Reserve Bank (FRED).

3.2 Features

3.2.1 Technical indicators

Technical indicators are numerical features calculated from historical price and

market data. Most of the technical indicators used here have a usage history
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going back decades. While no one says that one indicator is universally useful,

many technical analysts think that there are trends in the price movements, and

from time-to-time some technical indicators can pick up these trends.

While these technical indicators are just numbers calculated with an exact for-

mula, the nature of technical stock analysis still remains in a form of an art.

The following table presents some of the most widely used technical indicator:

Indicator Name Formula

EMA(N) EMAt(N) =
1

N + 1

∞∑
i=0

p(t−i)(1−
1

N + 1
)i

MACD(N,M) MACDt(N,M) = EMAt(N)− EMAt(M)

K% %K(N) =
100(ct −maxi=0..N (pt))

(maxi=0..N (pt)−mini=0..N (pt))

Arms Index
NRAdvances × V OLdown
NRDeclines × V OLup

For prediction 70 different technical indicators were computed based on a detailed

list provided by StockCharts.com [19].

3.2.2 Economic variables

Since the NASDAQ index is a composite index containing thousands of individ-

ual stocks across the USA, it seems reasonable to add economic variables to the

dataset. Improving economic conditions in the US will affect companies across

the country thus it will improve the stock market performance. In order to mea-

sure the performance of the US economy I have included several daily economic

variables downloaded from FRED.

The following variables have been included:

• Oil price

• Willshire Market index (similar to other stock indices)

• US Dollar index (weighted avarage of the $ exchange rate against a basket

of currencies)

• Corporate Bond index

• 1-year Treasury bond rate
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• S&P500 index

• Economic Policy Uncertainty Index

In order to get the change in the economic conditions for every variable I took

the daily percentage change in the analysis instead of using the absolute levels.

3.2.3 Feature extraction based on lagged correlations

The goal is to find technical indicators that are possibly correlated with the

daily price movements. Although this correlation is not going to be significantly

greater than zero we can try to compute the lagged correlations of the input

features with the movement and select the highest ones. I have plotted the lagged

correlations for the variables with the daily price change and selected those that

seemingly had some pattern of correlation. Although this is a heuristic method

and will most likely not imporve predictive performance, but using the correct

machine learning method we can be sure that it will not decrease it either.
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Development environment

4.1 Development environment

4.1.1 Python

I used the Pyhton programming language for all parts of my thesis, including

data acquisition, feature generation, algorithm development and testing and data

visualization. The motivation behind this choice is very clear, because Python

enables a very fast and dynamic way of development with a full variety of the

necessary data mining and visualization libraries suitably for out-of-the-box use.

In the next section I will give a short introduction to the Python libraries I used

during development.

4.1.2 Python libraries

The four main libraries I used are NumPy, Pandas, Matplotlib and Scikit-learn.

Numpy provides fast array based operations comparable to Matlab-s functional-

ity, which was necessary to scale up the algorithms to bigger amounts of data.

Pandas is a data analysis library which provides many useful tools for data

cleaning and munging including the DataFrame object type which seamlessly

integrates with Numpy arrays allowing a column labeled array type suitable for

storing variables.

Matplotlib is a visualization library able to produce a wide variety of graphical

content including graphs, bar charts and the like.

30
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Scikit-learn was the main reason for choosing Python. It is a machine learning

and data analysis library which contains all of the widely used classification, vali-

dation and other data mining algorithms making it easy to build or expand upon

them. The algorithms in scikit-learn are based on NumPy and SciPy (scientific

python library) and are well optimized allowing for parallel computations.



Chapter 5

Model selection and testing

5.1 Classification model and performance measures

In this section I will describe the classification models used for stock market

prediction. I will also describe the different performance metrics used for model

selection.

5.1.1 Model

I am modelling the market movements as a binary classification problem. The

target variable is the direction of the the price movement from the daily opening

price to the daily close price:

y(i) = sign(P
(i)
close − P

(i)
open).

Days with 0 change will be discarded from the training set during noise filtering

which will be described later.

The input features are the technical and economic indicators described in the

second chapter. This results in an 88 dimensional input vector.

5.1.2 Performance measures

Besides the general classification performance metrics (e.g. confusion matrix) it

seems reasonable to provide performance measures that take time into account

for this is basically a time-series prediction problem. Most of the basic metrics

32
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like accuracy or precision can be easily extended into sliding window versions

which will compute the performance for the last N -days. This technique makes

it possible for us to track the and compare the different models’ performance

during different time periods.

For each model five performance metrics are presented to make them easily

comparable:

• Accuracy shows the total percentage of correctly predicted days on the

given example set

• % classified up shows the total percentage of days classified up

• Trade accuracy shows the percentage of the total price movement cor-

rectly predicted based on the direction prediction

• Avg. yearly return is the mean return on our investment using the basic

trading strategy

• Std. of yearly return is the standard deviance of the yearly return on

our investment using the basic trading strategy

It is important to note that the mean yearly return is not directly computable

from the mean trade accuracy for the accumulative nature of the return. I chose

to include financial performance yearly return and trade accuracy in order draw

a better picture from the traders’ point of view. While I could have included

many more performance measures (e.g. ROC curves) I did not find it necessary

to do so.

5.2 Trading strategy

For algorithm evaluation I will use the same trading strategy for all the methods.

The strategy will be very simple and is not intended to reflect a real life trading

strategy where risk and money management are very important aspects. At every

day I we buy or short-sell stocks on the market opening price. Our decision to

buy or sell depends only on today’s prediction so if we predict that the price

will increase we buy on opening price and sell on close price, and if we predict

that the price is going to fall, we short sell on opening price and re-buy on

closing price. We will not hold stocks overnight. Also we are fully invested every

day, so for every day our profits or losses will be equal to the price percentage
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change during that day, depending on our predictions. I will also assume that

there are no transaction costs and also it is free to enter into long(buy) and

short(sell) positions. While these restriction may seem to decrease the relevance

of the performance evaluation, in my opinion they actually do the opposite. The

assumptions one makes about trading strategy and transaction cost can distort

the model performance measures, so by taking the one of the simplest trading

strategies we can be sure that we measure the quality of the prediction algorithm,

not the trading strategy.

5.3 Benchmark results

In order to be able to asses the quality of the predictors we need to take some

benchmark results into account. This is especially important because we want to

be able to distinguish good model performance from good market performance.

For example in good economic conditions when the stock market shows an in-

creasing trend there will be more upward price movement than downward. In

this case always predicting ↑ will give us good model performance for that period

even this model will have no predictive ability outside this time interval.

5.3.1 Buy-only

Figure 5.1: Buy-Only performance

In this strategy we assume that the

market is performing well and we

think that the price is more likely to

go up each day. In this case our trad-

ing strategy is to buy stocks on the

open price and sell them on the close

price. It is clear that the performance

in this case reflects the number of up

days compared to down days.

Looking at the performance plots we

can see that market has performed

well in the last two years and by using this simple strategy I described, we

would have gained significant revenue.

Unfortunately using this strategy for the whole time-frame would have generated

different results.
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5.4 Model training and Validation

5.4.1 Parameter selection and validation

For parameter selection I used simple grid search to avoid getting stuck in local

optimum. Although this method is computationally very expensive, the size of

the dataset and parameter space still makes it viable in our case. The parallel

design of the learning and validation algorithms allowed me to test a large set of

model parameters.

For model validation I used a modified cross-validation algorithm which I tailored

specifically for this problem. The basic validation algorithm behind mine is a

sliding window cross-validation where the model is trained on N consecutive days

of training data and tested against the next M days following the training set.

The training window then slides forward providing a new training and testing

set. It is possible to use accumulative training, where the only the right boundary

of the training set slides, using all of the previous days for training.

The standard version of these algorithms uses the prediction accuracy for param-

eter selection but I modified it to allow the selection based on trading accuracy

as described earlier. This method assigns more weight to days with large price

movements, even though we are using only binary classification.

5.4.2 Noise filtering

The main idea behind technical analysis is that price movements, especially

larger ones can be somewhat predicted by historical price data based various

trends in human decision making. It seems intuitive to expect the direction

of larger price movements is more predictable from past data, while very small

movements may have very little signs in past data. To incorporate this idea into

our model, it seems intuitive to set a threshold for minimal price change and

drop the data not reaching the threshold (where the two classes highly overlap).

By increasing the minimal price change threshold we can observe an increase in

the distance between the center (mean) of the two set of points. Similarly, there

with increased there is a decrease in cosine similarity between the class centers.

In order to increase predictive ability we need to find a good threshold that

gives good separation while retaining much of the input data. I have set this

threshold arbitrarily to 0.003 which meant that about 25% of the training dataset

was labeled as noise during training.
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Figure 5.2: Inc-Dec
Center Euclidean distance

Figure 5.3: Inc-Dec
Center Cosine similarity

5.5 Results

Tables 5.2 and 5.3 shows the model performances for each algorithm for the best

parameters selected during model selection.

Every model is tested on 3 subsets of the dataset. The Training column shows

the model performances measured by cross-validation on the training set. This

result was used for model selection. The Test columns shows the performance

measured by training the models on the full training set and evaluating it on

the test-set (2011-2014). Column Test-S shows the results of simulated testing

which shows the model performance on the test-set when the model are re-fitted

after every 100 days with the new data.

Table 5.1: Benchmark results

Buy-only Random prediction
Train Test Train Test

Accuracy 52.83% 54.96% 49.92% 51.60%
% classified up 100.00% 100.00% 50.64% 51.46%
Trade accuracy 47.70% 52.35% 50.12% 51.98%

Avg. yearly return -2.17% 4.05% -0.95% 6.31%
Std. of yearly return 19.68% 7.97% 16.07% 10.43%

Looking at 5.1 we can see the described metrics for the benchmark models. As

predictable the Random-prediction benchmarks gives accuracy close to 50% with

similar trade accuracy and avg. return close to 0% 1. As described Buy-only

performance depends heavily on economic conditions. On the Test set, where an

upward trend can be observed we can see that we get an 52.35% accuracy with

4.05% avg. yearly return. While the avg. return is positive this still cannot be

considered a good investment strategy considering the std. of the return which

would call for extreme risk management measures.

1These results can differ substantially by a new set of random predictions.
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5.5.1 k-NN

By using grid search with sliding window cross-validation to find the optimal

value of k the following model parameters were selected:

k: 7, weighted by distance

We can see that the model was able to reach 54.64% trade accuracy on the

training set which corresponded to 21.55% yearly return on average. However

the standard deviation of the return is 37.58% which is highly undesirable.

However the simulated performance on the unseen dataset shows only 54.36%

trade accuracy which pushes the average return down to 9.35% with a std. of

8.67%

5.5.2 Logistic Regression

For logistic regression I trained both L1 and L2 regularized versions. As we can

see from the results the L2 regularized version performed much better on the

training data while it was only slightly better on the test set.

Figure 5.4: Parameter selection for Logistic Regression

The figures on 5.4 show us the mean trade accuracies with sliding window cross

validation for the different values of C. The parameter selected for the models

are the ones that maximize this measure. For L1 this is 0.10 and for L2 this C

is 0.02.

The results show that simulated on the training set, both L1 and L2 logistic

regression outperforms the k-NN both in return and variability even though the

L1 regularized version shows a slightly worse average trade accuracy.

On the simulated test the difference between k-NN and logistic regression gets

more accentuated. In contrast with k-NN, trading based on L2 logistic regres-

sion produced 14.51% average return which is approximately 5% greater with
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technically the same standard deviation. L1 logistic regression also produced

similar results with even less return variability.

Figure 5.5: L2 logistic regression performance

5.5.3 Support Vector Machine

For support vector machines I tried both linear and kernel versions. I have used

the widely popular RBF kernel described in the second chapter. To select the

appropriate C and gamma parameters i used grid search over the parameter space

where C and gamma were both added in an exponentially increasing magnitude

following the advice of a guide made by the National Taiwan University [20].

The result of the grid search can be easily visualized with a heat map on 5.6.

Figure 5.6: RBF grid search

We can see a clear pattern regarding the best trade accuracies on the picture;

they lie on an approximately straight line on this exponentially scaled picture.

Although it would probably be interesting to extend the grid for lower gamma
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and C values to see the full pattern, it becomes increasingly expensive to solve the

optimization problem. As we can see the best parameter combination selected

by cross-validation is C = 72.78954 and gamma = 0.00028, giving 57.51% trade

accuracy and 39.31% average return simulated on the training set, which is

better than any of the previous models. As for the linear SVM, the best C

penalty parameter of 0.08172 resulted in a trading accuracy of 56.83% on the

training set.

Figure 5.7: RBF-SVM performance

Even though both the linear and RBF SVM showed superior performance during

model selection the picture slightly changes when we try them on the previously

unseen data. The most promising RBF kernel showed 53.75% trade accuracy

which is similar to k-NN and L1 logistic regression but is worse than L2 logistic.

However the standard deviation for the simulated test result was better than any

of the previous models showing a more consistent performance.

Figure 5.8: SVM Figure 5.9: Logistic regression

The great difference between the results on the training and test set is interest-

ing, because I payed special attention to avoid overfitting with sliding window

cross-validation, however the large parameter set can still give space for possible

overfitting. Another explanation could be that it was simply a bad period for

the SVM (it performed very poorly from the beginning to mid 2012). If we com-

pare the 100-day returns on the training set simulation we can see that it almost
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always outperformed the L2 logistic regression however there are times when lo-

gistic regression was simply better. These two possible explanations highlight the

difficulty in picking the best predictive models in difficult forecasting problems.

5.5.4 Random Forest

Random Forest classifiers can also be trained using different parameters which

control the way how individual trees are built thus control overfitting and pre-

dictive ability. I used grid search to select the appropriate value for the following

parameters (find the selected parameter in parenthesis):

number of trees (160), splitting criterion (entropy), number of features consid-

ered for each split (
√

nr of features), maximum tree depth (no limit), minimum

samples per leaf (1)

We can see that Random Forests performed very poorly compared to the previ-

ously presented algorithms. Even on the training set it was outperformed by all

the models including k-NN. On the test set we can see that it achieved less then

50% accuracy which indicates that the predictions were no better than random

guesses. It is interesting to see that this very popular off-the-shelf technique had

much worse technique than the other models. I could not come up with any

explanation regarding this.

5.6 Summary of Results

We could see that most of the machine learning algorithms presented in Chapter

2 could outperform both the buy-only and the random strategy. While the

results varied greatly, it clearly shows that there is room for machine learning

and technical analysis in stock market analysis.

The best performing model (L2-Logistic regression) on our test set could achieve

a 54.6% trading accuracy which I considered very good given the nature of the

problem. The average yearly return on the test set ranged 10 and 15 % for the

best models, but with high standard deviance. In absence of transaction costs

during my evaluation it is hard to compare these values with actual returns but

even so it looks promising. We could also see that the difference in performance

among the models changes by time, and it is hard to pick a single model for

prediction.
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Conclusion

In this thesis I intended to give an overview of the viability of technical analysis

and machine learning in stock market forecasting. After introducing the basics

of the stock market, I reviewed several popular machine learning algorithms and

tested them by trying to predict the direction of the NASDAQ composite index.

While my results are far from a real-world trading they still indicate a significant

possibility for the application of machine learning in stock prediction.

We could see that myriad of machine learning algorithms can provide great new

tools for financial forecasting. Even though there are theories to contradict the

possibility of stock market predictions, we know that there is a huge field which

tries to go into the opposite direction. I am certain that with the growth of the

available data and the increasing sophistication of the learning models, we will

see many success stories even if their life-span will be inevitably short.

Future work

While trying to predict daily price movement is a challenging problem, it has

much less real-world applicability then prediction for very short periods of time,

also known high-frequency prediction and trading. Predicting high frequency

price movements poses a whole different problem where model training time has

a very significant impact. It seems clear that technical analysis combined with

machine learning and distributed processing frameworks can provide valuable

tools for high frequency trading systems which would give a very interesting

research topic.
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